人类自从发现并开始使用电力之后,对于电力使用的焦虑就一直存在,即便是用于储存电能的电池出现,也只是稍微减缓了这种焦虑。就像现在全球火热的电动车一样,即便是有新鲜的体验,但依旧无法避免电池续航带来的焦虑。
电池对于电动车的直接影响,也使得各大新能源厂商以及电池供应商都绞尽脑汁去推进增加续航的方法。不过无论是物理上的堆电池方案,还是改变电池电解质组成元素,甚至改变物质形态的方法,在低温面前,这些电池的续航甚至都不能呈现出一个正常的状态,怎样能够让电池在低温下保温与升温,成为了对抗这个“电池杀手”的关键。
在研发以及使用电池的过程中,我们已经知道了,电池是有一个正常的工作温度区间,而在低温环境下电池的实际使用效果将会大打折扣,所以在这种环境当中电池就需要一个很好的热管理来为它保温。
在4月21日,长安汽车旗下长安深蓝品牌举办了深蓝技术分享会,在会议上长安公布了一项名叫“微核高频脉冲加热技术”。
单听这个名字,就知道这项技术肯定是针对电池热管理系统的,尤其是有脉冲加热这个字眼在。看回长安这次公布的这项技术,实际上它的想法并不复杂,在加热这个大前提条件不变的情况下,让电池包的升温更加迅速且均衡,以便让电池包在低温条件下尽快达到合适的工作环境。
原理方面其实是基于此前宁德时代公布的一项专利技术拓展开来的,这项专利就是利用了低温导致内阻增大的特性,通过在电池两端加装可以产生振荡电流的装置,使电流经过内阻很大的电芯,从而让电池内部产生大量的热量,最终让电池温度快速升高。
虽然这样的加热方式能够让宁德时代的电池组达到4℃/min的升温效率,但这种频繁让电流从正极向负极流经的方式,很容易让锂电池当中的锂离子,在负极上还原过程中形成树枝状金属锂单质,也就是“锂枝晶”。“锂枝晶”生长到一定程度轻则影响电池容量,重则造成锂电池内部短路,严重威胁人身安全。
因此为了避免由于频繁的过电造成电池负极出现锂枝晶的情况,长安在宁德时代这个技术的基础上,对这项技术稍微进行了改进,选择用交流电给电池组产生电流加热。
为什么一定要提及是交流电呢?此前的电池自加热技术,产生的电流都为直流电。按照物理定义,在单位时间内电流的大小和方向不发生变化的称为直流电,再看回“锂枝晶”的的产生条件,在放电过程中负极来不及处理锂离子导致出现金属锂单质。
需要喘息时间的电池负极,面对直流电恒定的输出,很容易到达极限,之后就容易出现“锂枝晶”,所以为了减弱这种“一成不变”,需要给负极一些喘息空间,而在单位时间内电流的大小和方向不断发生周期性变化的交流电就较为合适负责这项工作。
交流电并不像直流电一样一直保持恒定数值,它会一直保持正值-0-负值-0-正值的周期性变化,也正是因为交流电这种非恒定的特性,能够让电池负极减少负担,从而减轻产生锂枝晶的几率。
同时长安在会议上也提到了功率半导体IGBT(绝缘栅双极型晶体管),IGBT是一个非通即断的开关,它没有放大电压的功能,导通时可以看做导线,断开时当做开路。再加上电机以及BMS系统配合工作,就可以实现随机高频率的电流充放切换,进一步的减少锂枝晶这种情况的出现。
长安官方公布的深蓝C385动力电池组,可以在零下30℃的环境温度中保持4℃/mini的升温速率,在零下30℃的环境温度中可以提升50%的动力表现以及缩短15%的充电时间。从数据来看,改进后的“电池自加热”技术不仅效率更高,还具备了更持久的电池寿命,这对于在低温地区的用户而言是相当好的消息。
目前市面上较为主流的电池种类,可以按照元素类型分为两种,即三元锂电池与磷酸铁锂电池,这两者最大的区别就是使用的电池正极材料不同。
磷酸铁锂电池是采用磷酸铁锂(LiFePO4)作为正极材料。它的优点是在高温条件下或过充时安全性非常高,缺点是在低温条件下(气温低于-10℃以下),磷酸锂电池衰减得非常快,经过不到100次充放电循环,电池容量将下降到初始容量的20%,基本与寒冷地区的使用绝缘了。
三元锂电池是采用镍钴锰酸锂(Li(NiCoMn)O2,NCM)或镍钴铝酸锂(NCA)三元正极材料的锂电池,把镍盐、钴盐、锰盐作为三种不同的成分比例进行不同的调整,所以称之为“三元”,像宁德时代的NCM811就是指镍、钴、锰三者配比为8:1:1的三元锂电池。
三元锂电池的优点是高能量密度,同为宁德时代出品,它旗下的磷酸铁锂电池能量密度为178Wh/kg,而NCM523为200Wh/kg,NCM811更是达到了240Wh/kg。在低温方面-30℃条件下三元锂电池也可保持正常电池容量,更适应北方低温地区的使用条件。缺点是在高温条件下,三元锂电池的三元材料会在200℃时发生分解,在高温作用下极易发生燃烧或爆炸的现象。
上述的两种电池,虽然材料以及优缺点有所不同,但从微观的角度讲,两者的工作原理同样是锂离子在正负极之间来回迁移的过程。
在低温环境下,电池的正负极材料活性降低,同时充当桥梁的电解液导电能力也下降,因此电池在充放电时,内部会产生阻力,它被称为内阻。电池内阻增大,在电池正常使用过程中,就会产生大量焦耳热引起电池温度升高,实验表明环境0℃以下时,温度每下降10℃,内阻约增大15%。
受到了内阻的阻碍,想要发力却只能导致电池过量放电,电能不断的转换为热能,不仅电量下降、没办法正常输出功率,还容易对电池的安全性产生影响,这一切的结果都是因为低温环境造成的。
为了解决这个问题,除了上面我们提到最新的“脉冲自加热”技术外,其实供应商以及厂家都做了很多“保暖”的措施。
目前有几种常见的方案,第一种是大多数纯电车型选择的PTC与加热膜,这一种方案的想法是通过外部电热元件发热,提高电池温度。PTC有水暖与风暖两种,水暖通过PTC加热冷却液,再和散热器进行热交换,风暖是开启暖风后,冷空气直接和PTC进行换热,最终吹出暖风。而加热膜则像是给电池盖上一层导电加热的被子,但这两者的缺点都比较明显,PTC容易造成受热不均,并且占电池舱的空间,而加热膜由于安全的关系,整体的造价不低,并且实际的加热效率也不高。
另一种方案是液冷循环系统,它像是给电池包额外加一套暖气上去,通过加热冷却液来获得一个较为长效的热源。还有一种方案是热泵空调,整个原理像是强制抽取大气热量转换进车里的样子,但当环境温度过低的时候热泵容易失效,所以特斯拉也做了一个“魔改”,除了抽取外界空气的热量外,还收集动力电池系统、驱动系统以及PCS功率电子产生的余热,整套系统依靠八通换向阀进行复杂的热量汲取,以此提高热泵空调总体的效率。
这套脉冲自加热技术,实际上是包含在长安全电数字平台——EPA1平台内的全新技术之一,而这套技术第一个服务的车型将会是长安深蓝C385。
基于EPA1全新平台打造的长安深蓝C385,官方定位中级轿跑,它不仅拥有2900mm的轴距,同时还提供纯电、增程、氢燃料电池三种动。